Drawing Systems & Procedures

Eight key ideas for working smarter
In order to consistently create professional engineering drawings, it is important to have a well thought out system that works for you.

Can you answer these questions?

- Do you have procedures in place to ensure that every drawing produced is to a defined standard?
- Do you have templates set up to save you time, money, and rework?
- Does your revision system eliminate potential confusion?
- Are you employing advanced techniques such as drawing development macros to make your life easier?

If you are serious about producing professional drawings efficiently and to a high standard then you should be able to confidently answer these questions.

Read on for some more tips on how to start improving your drawing systems today!

The key is to develop a system that minimises upfront and ongoing time, so the next time a project needs drawings, everyone on your team knows exactly what is expected of them.
Before you draw, you need a plan!

The most important part of a quality drawing system is laying out your procedures clearly.

- Start a **procedures document** with a step-by-step guide on how to create a drawing. Templates, naming structure, drawing standards etc should all be listed to avoid future confusion. This is an example of a drawing procedure index:

```
1.0 Setup Options ................................................................................. 3
2.0 General Modelling Practice .............................................................. 4
3.0 Caliber’s Workflow .......................................................................... 5
3.1 Example ......................................................................................... 6
3.2 BOM’s for Assemblies and Single Parts ........................................... 7
3.3 General Drawing Formats ............................................................... 8
3.4 Revision Control ........................................................................... 9
3.5 Creating As Welded, As Profiled and As Machined Parts and Drawings ................................................ 10
3.6 Multi-User Environment and Large Assemblies ......................... 11
4.0 Standard Parts Library ................................................................. 12
5.0 Part Models for FEA Analysis ........................................................... 13
6.0 Sheet Metal Modelling .................................................................. 14
6.1 Converting Parts to Sheet Metal ...................................................... 15
7.0 Caliber SolidWorks and SolidEdge Settings Files ......................... 16
7.1 Templates .................................................................................... 17
7.2 Caliber Databases ........................................................................ 18
7.3 Toolbox ........................................................................................ 19
7.4 Caliber Weldments ........................................................................ 20
7.5 Caliber Textures .......................................................................... 21
7.6 Caliber Materials ......................................................................... 22
7.7 Design Library ............................................................................ 23
7.8 Adding New Textures .................................................................. 24
7.9 Adding Decals ............................................................................. 25
7.10 Adding a New Material to the Caliber Material Database ........... 26
7.11 Adding a New Client Specific Material ......................................... 27
7.12 SolidWorks Macros ..................................................................... 28
```

- Drawings should be laid out similarly so you can present professional drawing packs. This can be achieved with templates (discussed later) and sufficient detail in your **procedures document**.

- Everyone should be trained or made aware of the relevant drawing standard for your company and/or client. That way you can be sure that every engineer is creating drawings with the same symbols, dimensions, hole callouts, etc.
2. TEMPLATES
There’s no need to reinvent the wheel!

Templates greatly increase the speed at which drawings can be created. Plus, a good template ensures your drawings will contain the necessary information every time.

Poor templates require you to enter text directly, update multiple sheets for changes and type in notes—ultimately costing you time and money.

A drawing template with a border and title block should be set up for part, weldment, and assembly drawings. A good template will contain some of the following:

- **NOTES FOR THE RELEVANT DRAWING:** This way you know the correct information will be captured for each case. For example, the weldment drawing should mention the likes of specific welding tolerances and standards, whilst the part drawing may have surface finish notes. Drawings should mention material type, grade, and supplier. If it’s a plastic part, include the allowable visual imperfections and flash, etc.

- **LIBRARY NOTES:** Create templates for commonly used notes and symbols and store them in your CAD library. Then they can easily be dragged into drawings, saving time and ensuring repeatability.

- **AUTOMATIC PROPERTIES:** These will save you time without having to update the title block for every sheet if there is a change! A good template will automatically update information such as dates and names. Furthermore the details for the drawing should be entered in the custom properties area, so any update will automatically be extrapolated to all relevant sheets.

- **LINK YOUR PROPERTIES:** If, for example, your drawing template has an entry for cut length, make sure that the actual value is linked to the model. The last thing you want is someone updating the model but the drawing still shows the old cut length!

A good template will never have you entering data directly into the title block or BOM!
Have you ever opened a part and wondered where the drawing is, or what assembly it came from?

Use a workable structure! Naming your files sensibly will mean it’s easy to group together parts, assemblies, and their respective drawings. Create a system in your procedures and stick to it! If all of your engineers are working to the same structure, confusion can be avoided.

The structure shown below is clearly numbered and ordered so it’s obvious where to look. Create something that makes sense for you workflow.

Note that any ordered part numbering system always has exceptions and inconsistencies. We recommend just having a number which means nothing, but is unique. There are lots of ways to sort by part, weldment, assembly etc. These days it is not so necessary to sort your files like this due to CAD tracking technology.

Experiment and work out a system that’s best for you!
Having a good checking system is paramount to catching problems before they leave the office and supplying the customer with quality drawings.

- First of all, print and check your own drawing. Self checking is an essential and measurable activity that can drive down rework.

- If possible, have someone else check your drawings. A fresh set of eyes will often notice errors that you have missed. Ideally your ‘checker’ will be more experienced than you. Dedicated checkers are valuable in the context of maintaining drawing standards.

- Have a procedure for signing off drawings so someone is responsible for making sure they have been checked and marked up as required. That way you know it was done!

4. CHECKING
Catch mistakes before it’s too late
Revisions mean you can easily and efficiently keep track of what’s changing and why. Without a solid revision system, changes may be lost and items could be manufactured to old drawings.

- In the initial stages, drawings should be labelled Draft00, Draft01 etc. The purpose of draft revisions is that many changes are expected in the initial stages of development.
- Once the drawing is deemed suitable for release, the revision should be changed to Released to “re-set” the changes.

<table>
<thead>
<tr>
<th>Order of revisions example:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>00</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Revision tables should show what has changed between releases. This is used by the manufacturer to identify what he needs to adjust for the next item.
- This title block clearly shows all the necessary information needed to keep track of the drawing revision changes:

For ultimate control of models and drawings, nothing goes past a PDM (Product Data Management) system. However, a PDM system is only as good as the processes you have in place. Without the backup of robust processes, a PDM will only automate a poor system ... creating an even bigger headache! Setting up a PDM is a subject in itself and we’d be happy to provide advice as to how to implement one should you require.
6. BACKUPS
Anything that can go wrong, will go wrong!

- Keep a record! Hard copies with changes scribbled on them should be filed in a project folder. This way they can be looked at later to see why a change was made. Include asbuilts in your records.

- All revision bumps should be saved out as PDFs. It only takes a second, and means you can refer to old drawings easily when needed. Another tip is to ensure you have 'Previous Version' enabled within your system setup.

- Redundant saves in an ordered environment is not confusing and limits the need to bother your IT department to restore backups when required.

- Backup your backups! If your hard drive ever has a problem you will still need access to the latest files. With the right network setup this can be done automatically.

7. IP PROTECTION
Engage advanced technologies

- Don’t send your CAD files directly to just everyone! Even if you have signed NDAs, sending a PDF might be better.

- Use a PDF writer that has the option to add security to your files. This can stop images or text from being copied, the document from being modified, or even the document from being printed.

- If you need to you can even add a password to open files or time limit them.
Macros can be employed to do boring repetitive tasks in an instant.

Here are some examples of helpful macros that you could implement:

- **Replace sheet format macro**—replaces the sheet format for your set of drawings.
- A **custom properties macro** can be used to automatically fill in basic properties and create boxes for users to enter data.
- **Revision macros** can save out your drawing set from Draft to Released or vice-versa.
- **Save as PDF macros** can save out a whole folder of drawings as PDFs and/or print the drawing to hard copy. Use this when you think your drawing set is ready for a release pack.
- **Make DXFs macro**—automate output of DXF files of your flat patterns for an updated drawing pack.
So, what should a professional drawing system include?

1. **PROCEDURES**: Setup a ‘procedures document’ so that drawing files are setup in a consistent way. Keep your procedures up to date, encourage your team to add to them, and insist that everyone in your team to use them!

2. **TEMPLATES**: Invest some time in setting up a solid drawing template and you’ll save yourself time and energy on every job, and reduce the chance of mistakes sneaking in!

3. **FILE STRUCTURE**: Create a file naming structure that makes sense for your workplace and your workflow. Document it and stick to it.

4. **CHECKING**: A well thought out review procedure ensures that every drawing gets checked thoroughly every time. Print and check your drawings thoroughly. Have someone else check your drawings.

5. **REVISIONS**: Develop a clear and efficient system for keeping track of what’s changing and why it changed. Without one, changes may be lost and items manufactured to old drawings!

6. **BACKUPS**: Files get lost, computer systems break down. Keep hard copy records of your work, save revisions, and backup your backups.

7. **IP PROTECTION**: Your intellectual property is a valuable asset. Don’t distribute your CAD files unnecessarily—PDFs often suffice. Use the security settings within your PDF writer to your advantage.

8. **MACROS**: Use your software’s capabilities to the max and you’ll save time and money. Macros can be setup to do boring repetitive tasks in an instant.
Caliber Design is an engineering, analysis, and mechanical design consultancy.

Our team of expert engineers has multi-disciplinary experience across a diverse range of industries and products. This broad base means you get the benefit of engineers who:

- can innovate and engineer products successfully
- have hands on experience over multiple industry types
- are experienced working in multiple environments over a wide range of product groups

Engineering design projects can be complex and provide significant risk to business. At Caliber we specialise in mitigating design risk. Our experienced team embed analysis and engineering rigor into every project. Caliber will help you design and manufacture better quality products, achieve a better time to market, and net a greater return on investment.

Call the Caliber team now for a no obligation discussion about your next project. We can very quickly provide you with an estimate for a product requirements specification that will set you up for a successful project.

Visit us at www.caliberdesign.co.nz for contact information.
Our robust drawing systems help us produce quality drawings every time with minimal hassle.

This How To Guide includes some key ideas to help you setup an effective drawing system.

Ultimately your company will reach a new level of professionalism for your customers, whilst saving both time and money. It’s a win-win for everyone!